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Abstract. The exact vacuum polarization 4-tensor in the presence of a static magnetic field 
is calculated by a method due to Svetozarova and Tsytovich. The Hermitian part of the 
tensor is explicitly renormalized by Shabad’s diagonalization with respect to tensor indices 
and the anti-Hermitian part of the tensor is found to be finite and gauge invariant. An 
alternative method for calculating the vacuum polarization tensor is developed using the 
relation between the anti-Hermitian part of the tensor and the probability of emission and 
absorption of a photon by an electron in a static magnetic field. 

1. Introduction 

In an earlier paper (Melrose and Stoneham 1976, referred to as I) we presented an exact 
calculation of the polarization tensor for a magnetized vacuum and we used this to 
calculate exact refractive indices. The important ingredients in the calculations in I 
were the use of the exact electron propagator in the form due to GChCniau (1950) and 
GChtniau and Demeur (1951), a simple method, based on an idea due to Shabad 
(1975), for renormalizing (regularizing) the tensor, and the use of the methods of 
plasma physics to derive the wave properties. The resulting expressions are exact in the 
sense that unlike other calculations, e.g. Toll (1952), Adler (1971), Constantinescu 
(1972a, b), Tsai and Erber (1974) and Shabad (1975), neither the dipole approximation 
nor the weak-field approximation is made. Furthermore, the refractive indices are not 
assumed to be approximately equal to unity but are found exactly. 

In this paper we present an alternative form of the polarization tensor for a 
magnetized vacuum. The basic calculation is a minor generalization of one presented 
by Svetozarova and Tsytovich (1962), who calculated the unrenormalized 3-tensor but 
did not renormalize it. We calculate the unrenormalized 4-tensor by the same method 
and renormalize it by the method of I. The result appears qualitatively different from 
the result found in I due to the different forms of the propagator used in the two 
calculations. (Only in special cases have we been able to show explicitly that the two 
forms of the tensor are equivalent, cf appendix 2.) The alternative form derived here is 
convenient for separating into Hermitian and anti-Hermitian parts, and, more gener- 
ally, is in a form familar in plasma physics. In fact Svetozarova and Tsytovich (1962) 
and Melrose (1974a) have used the present approach to derive a relativistic quantum 
expression for the dielectric tensor of an electron gas. 

1211 



1212 D B Melrose and R J Stoneham 

From another viewpoint, we indicate how the anti-Hermitian part of the tensor may 
be related to known expressions for the probability of emission and absorption of a 
photon by an electron in a magnetostatic field, and how the Kramers-Kronig relations 
may be used to derive the Hermitian part of the tensor. The implied method for 
calculating the vacuum polarization tensor is a generalization of Toll’s (1952) method 
for calculating the refractive indices of a magnetized vacuum, and it is also a generaliza- 
tion of a well known method for an unmagnetized vacuum (e.g. Euwema and Wheeler 
1956, Lifshitz and Pitaevskii 1974, 0 110). This alternative method reproduces the 
result we find by direct calculation using the approach outlined above. 

In $ 2 we write down the Hermitian part of the unrenormalized polarization 
4-tensor for a magnetized vacuum; the 3-tensor part is that calculated by Svetozarova 
and Tsytovich (1962). We simplify the tensor by performing some of the indicated 
summations explicitly. The tensor is renormalized in Q 3 using the method presented in 
I. In 9 4 we calculate the exact anti-Hermitian part of the vacuum polarization 4-tensor 
which may be used to discuss gyromagnetic absorption and absorption due to pair 
creation. The threshold photon energies for the anti-Hermitian part of the tensor to be 
non-zero are shown to include those corresponding to the limiting energies for pair 
production as given by Toll (1952). Section 5 contains the alternative derivation of the 
vacuum polarization tensor based on Toil’s method and on the well known method for 
the zero-field vacuum polarization tensor. In the strong-field limit and in the dipole 
approximation our results reproduce those of Tsai and Erber (1974) and Heisenberg 
and Euler (1936), respectively. For the anti-Hermitian part of the tensor we correct the 
result of Tsytovich (1961) for the zero-field tensor. 

It is worth emphasizing that we describe the response of the medium (a magnetized 
vacuum) as is done conventionally in plasma physics where one incorporates both the 
electric and magnetic responses of the medium in an equivalent dielectric tensor. This 
tensor is related to the vacuum polarization tensor by 

with cuii(k, w )  equal to minus the p = i, v = j  components of the renormalized vacuum 
polarization tensor, reg (Y @”(k, U ) .  The separation into electric and magnetic responses 
may be obtained by writing down the induced current and expanding it in multipole 
moments, but this procedure is useful only when moments other than the electric and 
magnetic dipoles and electric quadrupole may be neglected. 

Our notation is that of Berestetskii et a1 (1971) (but with -e for the electronic 
charge) and unrationalized Gaussian units with h = c = 1 are used. The symbols := and 
=: define the quantities on the left and right respectively and A @  = (Ao,  A )  relates a 
4-vector to its time and space components and A = (Al,  A 2 ,  A 3 )  relates the 3-vector to 
its Cartesian components. 

2. The Hermitian part of the unrenormalized vacuum polarization tensor 

The Hermitian part of the unrenormalized vacuum polarization 3-tensor in the 
presence of a static magnetic field was calculated by Svetozarova and Tsytovich (1962) 
and the details of the calculation were given by Melrose (1974a, appendix A). Here we 
extend this calculation to find the corresponding 4-tensor a@”& w ) .  The Hermitian 
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part of the tensor is given by 

where * denotes complex conjugation and where the sums are over n = 0, 1,2,  . . . ; n' = 
0, 1,2,  . . , ; s = *l, S I  = f 1, E = *l ,  E'  = *l ,  with 

sq := [m2+p:+(2n+1+s)eB]' /2 ,  

sq, := [ m + 0, :)2 + (2n + 1 + s ')eB ] 'I2. 

With the coordinate axes defined by 

with 

y := n ' -n ,  
1/2 r : = (  + m ) , 

E ' E ~ ,  + m 

t := [ ( € E ,  + m)(E'Eq'+ m)]' /2 ,  

p I  := [ (2n + 1 + s ) e ~ ] ' / ~ ,  

p i  := [(2n'+ 1 + s ' ) ~ B ] ' / ~ ,  

where L is a generalized Laguerre polynomial in the notation of Gradsteyn and Ryzhik 
(1965). The argument of the functions J", etc, in (5) is k:/2eB. 
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The foregoing expression for awY(H)(k ,  w )  corrects that given by Melrose (1974a) 
which had the incorrect sign attached to (rG$)3. It includes the sign of k, explicitly to 
facilitate discussion of the symmetry properties of the tensor. 

We now proceed to simplify the expression ( 2 )  for the unrenormalized vacuum 
polarization tensor by performing the sums over E ,  E ' ,  s and s' explicitly. Firstly, note 
that the factor ( E  - E ' )  in (2) implies that the only terms which contribute have E '  = - E .  

Consequently (2) may be rewritten in the form 

Further simplification is achieved by re-labelling the dummy summation and integra- 
tion variables in (8) (with (5 ) ) ,  specificallyp, *p:, s *s', n - n' (implying U* -U), and 
then interchanging the orders of integration. Making the replacements p, + -p,, 
p;+ -p: and E + - E  then gives, as an alternative to (8), 

with 

1, 

{-1, 

for k u  = 00, 11,22,33,02,  13; 

for PI, = 01,03, 12,23, 
f(P, U)  := 

and where we have used the relation (7). Half the sum of the two forms (8) and (9) gives 

with 

for p = 00, 11,22,33,02,  13; 

for ,uu = 01,03, 12,23. 
d P . ,  U > =  

The sums over E and over s and s' in (10) may now be performed. Introducing the 
shorthand notations 

E ,  := (m2  + p s  + 2r~eB)"~,  

E,,' := (m2+(p:)2+2n'eB)' '2, 
pn := (2neB)'/*, 

pn, := ( 2 n ' e ~ ) ' / ~ ,  (12) 

2 for n 3 1; 
an={ for n = 0, 

and using the relations (A.l) and the identities 
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gives 
00 

&H)(k, -- e 3 B  J x  9 J dp:277s(p;-p2 +kill 

x(z r  [w2- (En+ ,  +E,~+1)2]E,+1En'+l n = O  

2x -00 2.n -* 277 

dYv 
+ f dY), 

d:' = 2PflP i sgn ~ , ( E , + E O ~ ) . C - ~  

[U2-(&, + E 0 ' ) 2 ] E n E O '  

d:' = di2 = d i 3  = 0.  

This completes our simplification of the Hermitian part of the unrenormalized 
vacuum polarization tensor. 

3. Renormalization 

The vacuum polarization tensor may be renormalized by the method developed in I. 
The essence of the method is that the renormalized tensor must be of the form 

2 
reg Q p"(k, U )  = 1 Gift", 

i =O 
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where the Gi are functions only of the invariants B2,  U ’ -  ki and kl, with 

k”k’ 
k 2  fY := gLLU -- 

btbr fy := - (i = 1, 2) ,  
(bi l2 

(17) 

(The Hermitian part of the tensor is given by (16) with only the real parts of the Gi 
retained.) The Gi may be found by equating them to the components of the unrenor- 
malized tensor along the f:”. These components are necessarily finite. The remaining 
parts of the unrenormalized tensor are the gauge-dependent and divergent parts; that 
is, the remaining parts are just those discarded in any renormalization procedure. 

Explicit calculation gives 

where Re  denotes the real part, with 

The renormalized vacuum polarization tensor given by (16) (with (17), (18) and (19)) 
must be equivalent to that obtained in I, but it is obviously in quite a different form. 

4. The anti-Hermitian part of the vacuum polarization tensor 

The anti-Hermitian part of the vacuum polarization tensor,  CY""(^)(^, w ) ,  may be 
obtained from the Hermitian part (2) (or (15)) by replacing w by w +io and retaining 
only the semi-residues resulting from the application of the Plemelj formula (Mont- 
gomery and Tidman 1964,s 5.3). The delta functions obtained by this procedure imply 
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relations of the form 

2 vel? 
(0’ - k f)’ p: :=  1* 

1217 

(20)  

and p z  = p ; ,  with 

and 

The integral over p z  in the anti-Hermitian part derived using ( 1 5 )  is then trivial. Since 
the polarization tensor is symmetric, the anti-Hermitian part is i times the imaginary 
part. (It is convenient to introduce unit step functions @ ( K : , , )  when writing down the 
components of cy ””‘“’(k, w ).) 

The requirement that K”,,, be real implies a restriction on w ,  specifically o2 < w !  or 
o2 > w t ,  with 

o * := k i + 2(m ’,+pi +1 + veB) * 2[(m + ~ ’ , + ~ ) ( m  + p $+1)] 1’2. (23) 2 

Alternatively the requirement may be expressed as a limit on the values of n and n’ 
which are to be included in the summations (cf appendix 3). The equation / U )  = 
& , + I  also has solutions p L  = p :  and p z  = p i .  This equation is the condition for 
gyromagnetic absorption by electrons or positrons to be possible. Gyromagnetic 
absorption does not contribute to  CY^"(^)(^, U )  in a vacuum. Only the absorption due to 
pair creation is to be included for the vacuum. According to Svetozarova and Tsytovich 
(1962) only the solutions of (20) with w 2 > w :  correspond to pair creation and only 
these are to be retained. 

By applying the foregoing procedure to (15) one obtains 

and with the remaining components of cy”’(a’(k, 0) determined by the requirements of 
gauge invariance, Note that we do not impose gauge invariance, the result which 
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as well as identities obtained from these by making the replacements n c*n' and using 
(7). A separation of  CY"^(^)(^, w )  into components along the fr" defined by (17) gives 
the imaginary parts of the G,. 

The presence of the functions O(K;,-l) and O(K:,-,) in (24) implies that absorption 
due to pair production is only possible for w 2 > k i + 4 m 2  and U * >  

k i  + m '[ 1 + J(1+ 2eB/m2)I2, respectively. These are the limiting photon energies for 
pair production by the differently polarized photons propagating through a magnetized 
vacuum, as given by Toll (1952) and Alder (1971). 

5. An alternative method for calculating the vacuum polarization tensor 

The following is an alternative method for calculating the vacuum polarization tensor 
based on a known expression for gyromagnetic emission. 

The probability per unit time for emission of a photon in the mode U in the range 
d3k/(2.rr)3 of wavenumbers by an electron with initial quantum numbers q and final 
quantum numbers q' is given by (Melrose 1974a) 

with RE(k) the ratio of electrical energy to total energy in the mode U and with r;;(k) 
given by the 3-vector part of ( 5 )  with E = E '  = +l. The probability per unit time for 
absorption of a photon in the mode U is obtained from (26) by replacing k by -k ,  using 

w " ( - k ) =  -w"(k) ,  e" ( -k )  = e"*@), = RZ(k) ,  (27) 

and interchanging quantum numbers q and 4 ' .  Detailed balancing then requires that 
one have, for E = E '  = 1, 

r;;:(--k) = [r;:;(k)]*, (28) 

(r$(-k))O = [(r;:(k))O]*. (29) 

at least to within a phase factor. The identity (7) allows one to prove (28) for arbitrary E 

and E ' ,  and it also implies 

The probability per unit time for pair annihilation into a photon in the range 
d3k/(2.rr)3 is related to (26) by a crossing symmetry. By suitable re-labelling (26) 
becomes 

where the quantum numbers q" are the same as 4' but with the sign of p :  reversed and 
where w " ( k )  has been replaced by its modulus to avoid ambiguity. 
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For a vacuum containing a static magnetic field in the 3-direction the absorption 
coefficient (e-folding energy decay rate) for the mode r is 

s,s' 

This result is the same as that obtained by using the relation (Melrose 1974b) 

y"(k )  = -2iw" (k )R 2jk )e :*(k )e,"(k)~ !f)(k, w"(k)),  (32) 
where ~ $ ' ( k ,  U )  is related to a!f)(k, w )  by equation (1) and the anti-Hermitian part of 
the vacuum polarization tensor is that obtained from (8). 

The alternative method for calculating the vacuum polarization tensor for a 
magnetized vacuum is based on (30)-(32). One starts from the probability for pair 
production given by (30) and identifies E!:)@, U )  from the equality of (31) and (32). The 
Hermitian part of the vacuum polarization tensor may be calculated from this by using 
the (doubly subtracted) Kramers-Kronig relation (Lifshitz and Pitaevskii 1974,O 108). 
The vacuum polarization 4-tensor may then be obtained from the 3-tensor by using the 
requirements of charge continuity and gauge invariance (Melrose 1973). 

The foregoing method is a generalization both of the method used by Toll (1952) 
and Erber (1966) to calculate the refractive index of a magnetized vacuum from the 
absorption coefficient for photo-pair production, and of the method used by Euwema 
and Wheeler (1956) and Lifshitz and Pitaevskii (1974, 0 110) for an unmagnetized 
vacuum. This alternative method reproduces the result (24) for the anti-Hermitian part 
of the tensor. 

Appendix 1. Summation formulae 

The following identities are used elsewhere in this paper. For any function f ( n ,  n') of 
integers n and n', both positive semi-definite, one has 

m w  m w  m 
1 1 f(n, n ' + l ) =  1 1 f(n + 1, n ' + l ) +  1 f(0, n ' f l ) ,  

n'=O n=O n'=O n = O  n ' = O  

m m  m m  c f ( n + l , n ' ) =  f ( n + l , n ' + l ) +  f f (n+1 ,0 ) ,  (A.1) 
n'=O n=O n '=O n = O  n = O  

m m  m w  c c f(n, n')= c c f(n + 1, n ' + l ) +  f f(n +1 ,0)+  f f(0, n'+ l)+f(O, O), 
n'=O n=O n'=O n = O  n=O n ' = O  

m m  m c c f(n + 1, n ' f  l)&,-n,-1= f(n +2, n + l) ,  
n ' = O  n = O  n = O  

m m  W c c f ( n  + 1, n ' f  l)6nLn,l = f(n + 1, n +2). 
n ' = O  n = O  n = O  

Appendix 2. Special cases of the Hermitian part 

A.2.1. Zero-field limit 

Except in the limit k, = 0 the zero-field vacuum polarization tensor is difficult to extract 
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from (19). It may be found by using our method but with the electron propagator 
replaced by its zero-field expression. Alternatively, the method of Heitler (1954,O 32) 
may be used. Applying our renormalization procedure to the resulting unrenormalized 
expressions gives 

e2k2 p x ( ~ p  - Ep-k)-kiEp 
R e G o = ~ I d 3 p  4.n k, 

[U - ( E p - E p - k )  2 ]E@p--k' 
(A.3) 

Re G1 = R e  G2 = 0, 

with E~ := (m2+ lp12)1/2 and &p-k := (m2+Ip -k12)1/2, Integrating around the poles in 
the usual way gives 

e2k2 1 (1-4 cot 
Re Go= -s(~- 3k2 (-4.4) 

with sin2$ := k2/4m2. The renormalized vacuum polarization tensor obtained from 
(A.4) is just the usual zero-field tensor (Akhiezer and Berestetskii 1965, 0 47.3). 

A.2.2. Long-wavelength limit 

In the long-wavelength limit (k, = kli = 0) the limits 

where&; := [m2+(P:)2+p:]1/2, andtheidentities(A.2)may beappliedto (19)togive 

In the limit w << 4m2 the integration over pz in (A.6) is straightforward if one makes 
the expansion 

1 + (m2 +PI)/(EnEn+l) 
(En +cn+d3  



The polarization tensor for a magnetized vacuum 1221 

This gives, with L := eBJm’, 

Re G1 = 0, 

where 
35(3 + 4 x )  - 140L(1 +x)+42L2(5 + 4 x )  - 112L3(3 + 2x)+ 80L4(7 + 4 x )  
(1+2x)2 (1+2x)3  (1+2x)4 (1+2x)* ( 1 + 2 X y  ’ F ( x )  := 

(A.9) 
35an 

G ( x )  := - 
( 1  + 2x)‘ 

The sum over n in ( A . 8 )  may 
summation formula 

1 1 1 F(nL)=-(F(co)+F(O))+- J d x F ( x ) .  
n =O 2 L o  

W 

be expressed as an expansion in L by using Euler’s 

r a  

(A.lO) 

where the Bernoulli numbers are BZ = b, B4 = -& etc (Abramowitz and Stegun 1965, 
p 806). In this way (A.8) with (A.9) becomes 

3+4x e2w2L2 ~ ’ U ’ L ~  ReGo=- -- +- 
(1+2x)’ 9 0 ~ ’  1 0 5 ~ ”  

Re G1 = 0, 

ReGz=--  - e’w’ J” dx +7eZw2LZ - 13e2w2L4 
3 ( 2 ~ ) ’ *  0 ( 1 + 2 x )  1 8 0 ~ ’  6 3 0 ~ ~  ’ 

(A. 11)  

where only terms up to L4 have been retained. Only even powers of the magnetic field 
appear in these expansions, as required by Furry’s (1937) theorem. The first term in 
Re Go is identical to the long-wavelength, low-frequency limit of (A.3). It is identified 
with the long-wavelength, low-frequency limit of (A.4) and is thus equal to 
e 2 w 2 / 6 0 ~ ’ m 2 .  The first term of R e G z  resulted from subtracting two divergent 
integrals. It is spurious, as can be seen from the zero-field limit of (A.6) ,  and is to be 
ignored. 

The expansion (A. l l )  agrees with that obtained from equation (36)  of I. The 
resulting expression for cij(O, w ) obtained using ( 1 )  agrees with the dielectric tensor 
calculated from the Heisenberg and Euler (1936) effective Lagrangian. Keeping the 
next-order terms in k gives the magnetic permeability tensor. The equivalent dielectric 
tensor is related to the dielectric tensor .Fij (electric dipole approximation) and magnetic 
permeability tensor F~~ (magnetic dipole approximation) by 

cij(k, U )  = .;.i + 7 [Sij - K ~ K ,  + 6ij ( K , , , K , , ~  LL - pi:) Ikl 
w 

-1 -1 hi1 + KiKj/L,, - K r / L i I K j  -Ki/Ljs K s ] ,  

with K := k/lkl and with p i 1  denoting the tensor inverse to pip 

(A. 12)  
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A.2.3. Strong-field limit 

For low-energy photons (0’- k;f, k:  << 4m ’) traversing a strong magnetic field B >> B, 
(:= m2/e), one has 

E = m ’( 1 + 2neB/B,) + p f >> E (n # 01, 

( E  L)’ 5 m ’( 1 + 2neB/ B, ) + (p L)’ >> ( E  b) 

Eb-Eo-@&l/Eo)- 

(n # 0) (A. 13) 
and 

The dominant term in (19) in this limit is therefore the term containing the factor 
[ u ~ - ( E ~ + E ~ )  1 . This gives, using Li(O)= (n + v ) ! / ( n ! v ! ) ,  I 2 -1 

Re G o = R e  G1 =0,  
(A. 14) 

Re  G2 = 

After performing the p i  and pz integrals this gives 

4? rReG2 e’ B --- R e x 2  := 
(u2 -k f )  3~ B,’ 

(A. 15) 

This result agrees with equation (50) of I. The first part of equation (5  1) of I gives the 
refractive index of a magnetized vacuum with 1 <c BIB, << 37r/e2 which re roduces the 
dominant strong-field term of Tsai and Erber (1975). For BIB,>> 3 ~ / e  the relevant 
refractive index is the second one in equation (51) of I, but for such strong magnetic 
fields it may be necessary to consider higher-order radiative corrections. 

P 

Appendix 3. Special cases of the anti-Hermitian part 

A.3.1. Long-wavelength limit 

For propagation along the magnetic field one sets kl  = 0 in (24) and uses LL(0) = 
(n + v ) ! / ( n  !v!) to obtain 

ie3B m 

=--sgn(w2-kf)sgnw 1 ( p ; -  

a33(a)(kll, - sgn(w2-ki)sgnw 1 a n ( m 2 + p f )  

2?r n=O 

(A. 16) ie 3 B ~  m 6 J ( K L l )  

IT(@ - k;f)’ n =O K0.n-1 

For an electron gas Svetozarova and Tsytovich (1962) calculated the anti-Hermitian 
part of the tensor in this limit but they ignored the vacuum terms given above. 

In the long-wavelength limit, kll= 0 in (A.16) gives 
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with nl and n2 such that {w2[ l - (2eB/02) ]2 -4m2} /8eB and ( w 2 - 4 m 2 ) / 8 e B  are 
greater than or equal to nl and n2, respectively, and less than n l + l  and n 2 + l  
respectively. Cover and Kalman (1974) obtained the opposite sign for a33‘a)(0, w ) ,  but 
this is probably only a difference of notation. 

A.3.2. Zero -field limit 

In the zero-field limit one sets kll= Ikl in ( A . 1 6 )  and makes the replacements 

with p l 0  := [a(w2 - 1kl’)- m2I1”. On performing the integration one obtains the zero- 
field tensor 

This result agrees with that of Feynman (1949) and corrects that of Tsytovich (1961) by 
a factor of 2. 
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